
1

Theory of Mathematical Strings: the First Steps

A.Kornyushkin

Moscow Institute of Physics and Technology
email: kornju@mail.ru

The numerous internal symmetries are found in N-dimensional integer lattices (ZN). The relation
of these symmetries with the new mathematical category – the so-called the Masks (or
Neighborhoods) – is shown. A set of definitions for the Correct Masks and Perfect Masks is
presented; an identity between the Correct and Perfect Masks is hypothesized. The relationship

between the Perfection of the Mask and the new category named “Mathematical String” is
shown. The Correctness of the several Masks in ZN (N=1,2) is proven and a simple method to
find the Correctness for all other N is outlined. The hypothesis of high population density of
Perfect Masks in integer lattices ZN with large N is stated.

1. Introduction

This work declares a discovery of a new mathematical object: Mathematical Strings. This is a fairly
simple object. A specific example is shown below (see Fig. 19 and also Fig. 10C); the origin of each

line in Fig. 19 will be explained later on in the paper. At the same time, this article has its own

specifics, and it requires an extended preamble.

First, it is hard to find any section in mathematics that matches the scope of this work. It is just an
article about a new algebra, a new symmetry, with the word symmetry to be understood in a broad

sense. There is certain type of symmetry and, accordingly, mathematical category called group.

There is a concrete example: "tetrahedral group of rotations". We introduce another type of symmetry
and call it Mathematical String. Correspondingly, there is a concrete example: Mathematical String of

the Mask (19,11). This paper is written about such an object.

Due to the fact that the paper is about a completely new object, its understanding does not require any

prior knowledge. So what does it take to understand it? (See Fig. 1).

Fig. 1. What is needed for TMS?

To understand Mathematical Strings, we need only to turn on a reversible Cellular Automaton of the

second kind on the integer lattice Z
N
. We use the Automaton in its most primitive form, a particular

type of the Automaton depends only on the corresponding Neighborhood; and this Automaton

produces Mathematical Strings.

Now, the word Neighborhood comes up. This term, which is extensively used in Automata Theory, is
also crucial for Mathematical Strings. Yet, we decided to replace it with Mask. First the new term is

shorter; secondly, it has more appropriate meaning for a purpose of our paper.

Lets us take a Simple Automaton in two dimensions in zero moment of time. The Mask (as a physical
object) in this case can be imagined as a sheet of black engineering paper with a few holes cut in some

mailto:kornju@mail.ru

2

of its “squares”. Impose it on our lattice Z
2
 filled with letters A, B, and C and then find at least one

letter C in the holes. Dependent on the answer, derive the meaning of the Automaton in the given
point in a consecutive moment of time using certain transfer rules.

Fig. 2. Explanation of Mask’s principle of operation. Transfer Rules for our Simple Automaton.

In the end of our narrative, we report on the main and totally unexpected result. All the Masks and in

all (apparently) dimensions N are divided into two very distinct categories. There are Masks that

form the String (we call them Correct or Perfect Masks), and the Masks that do not form the String

(Incorrect or Imperfect Masks). See Fig. 3.

Fig. 3. Correct and Incorrect Masks.

Mathematical String, in its turn, also has two very characteristic features.

First, the String resembles the electron in quantum physics, the latter is both the wave and particle.
Accordingly, the Mathematical String exists simultaneously in two representations: as a so-called

Simple option and a Table one. It is a pure luck that this Table option exists. The existence of this

option allows us to rigorously define and fix the String position. In fact, the very existence of Tables
transforms a set of empirical, yet, peculiar facts into a rigorous mathematical science.

Secondly, the aid of a computer is crucial to describe such a mathematical category as String. It means

that Strings as a mathematical category could not been discovered till the last decade of the 20-th

century, simply because powerful computers did not exist prior to that time. Below, we mention the
average time it takes for a modern personal computer to perform tasks related to finding the Strings.

If the Mask is Incorrect, then less than 1 millisecond (on average) is enough to find about this fact and

stop further investigation. If the Mask is Correct, then it takes approximately a second to fully
establish all Transition Tables for the Table Cellular Automaton. Then the personal computer (PC)

3

can work for years, but the Transition Tables do not change. In order to prove the Correctness of

these Tables, even for a simple Mask in two dimensions, it may take hours or even days of PC
operation.

Do we have a confidence that the content of the Tables does not change during the extended computer

operation? Strictly speaking, even after spending years checking the content of the Tables using the

most powerful computer one, after all, cannot declare a direct proof. So it still remains the algebraic
problem. Nevertheless, we are able to answer “yes”. Once we prove that the Table Cellular

Automaton found by our computer is self-consistent, closed, and possess symmetry of a certain kind,

we can safely assert this.

We hope that this article can be of interest for physicists, particularly, for quantum physicists. More

specifically, it can be interested for the physicists engaged in quantization of various objects or

engaged in developing the String theory (in the physics realm not in mathematical one). After all,
what is the meaning of "quantization"? There is a transition from a continuous space to some kind of

“lattice”, at the base of which lays some sort of quantum. Perhaps, all the interested people would be

surprised to learn that this very “lattice” has an infinite number of new and quite unexpected internal

symmetries.

2. Definition of Neighborhood (Mask)

Let us define Mask M in N-dimensional space as the set of n integer, nonzero, and the different

vectors of dimension N:

1 2 1 2{ ; ;... }; { , ,..., }; 1, ..., ; .n j N kM a a a a i i i j n i Z

The Mask is normal if among other vectors it comprises all the vectors (we can call it unit vectors)

wherein one element ik (k = 1, ..., N) is +1 or -1 while all others elements are 0. The Mask is called
primitive if it contains ONLY unit vectors (in other terms, it is called von Neumann neighborhood).

Thus, primitive Masks are a subclass of normal Masks. The Mask that for any vector { i1 ,i2,…, iN}

contains vector { -i1 ,-i2, …, -iN} is called central-symmetric. In one-dimensional integer space, any
Mask is easy to describe with two numbers (m, k) where the binary representation of m gives negative

i, and the binary representation of k (after mirroring) gives positive i. For instance, (19,11) stands for

Mask {-5;-2;-1;1;2;4}. This is due to the fact that (19,11) = (2
4
+2

1
+2

0
, 2

0
+2

1
+2

3
) = (10011; 1101);

after inversing (“mirroring”) the sequence of digits in the second component (1101
Mir

 → 1011), we

obtain {-5;-2;-1;1;3;4}. Similarly, expression (21,11) =(2
4
+2

2
+2

0
, 2

0
+2

1
+2

3
) = (10101; 1101

mir
)

=(10101; 1011) denotes Mask {-5;-3;-1;1;2;4}. In the future, we will consider only normal Masks.

From this point, any Mask = normal Mask. Examples of different Masks are presented in Fig. 4.

Fig. 4. Primitive (von Neumann’s), normal, and central-symmetric Masks.

(1)

4

3. Definition of the Correct Mask. Theorem 1

 Consider lattice Z
N
. Some or none of lattice dimensions can be closed (like in a torus) whereas all the

other stay infinite, this property has no impact on our future analysis.

Take any Mask in N-dimensional integer lattice and add Zero vector to it (all the elements of Zero

vector equal 0). Using this Mask with Zero vector we define a Cellular Automaton (CA; further we

refer to this Automaton as Table CA) with the following properties:

1). CA cells can be in one of 6 states. At every moment of time, the state is one of the letters from

following set {-x;-y;-z;+x;+y;+z}

2). The state of each cell in the next moment of time is defined by Transition Tables R-x, R-y, R-z, R+x,
R+y, R+z, that can be generally written as

1,0 1,1 1,

2,0 2,1 2,

,

,0 ,1 ,

, ,..,

, ,..,
; { ; ; ; ; ; }.

...

, ,..,

n

n

x i j

c c c n

a a a

a a a
R a x y z x y z

a a a

The number of columns in the Tables is n (the number points in the Mask) plus 1. We take c as the
number of rows in the Tables . Both n and c will be constantly used in the text below. (All the

variables that are used in this paper are listed in Appendix 1).

Example of Transitional Table for a Mask (1,1); n=2, c=9 (the rule how to find c for a particular
Mask will be explained further on) is shown below:

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

, ,

.x

y y y

y y z

z y y

y y y

y y y

z z z

z z y

y z z

y z y

R

For a given Mask in Z
N
, Transition Tables can be established for other indices (that is -y,-z,

+x,+y,+z). We remind here that there are n+1 columns in Transition Tables R due to inclusion of
Zero vector. No two rows in a set of Transition Tables can be the same.

Then a set of standard routines is executed. First, we arbitrarily enumerate our Mask points plus Zero

vector (the center) with numbers j . (Fig. 5 shows Zero “point” with a dot).

Secondly, we superimpose (overlay) each cell in Z
N
 with zero point of our Mask. Note: it is due to

that “overlay” operation, the name “Mask” seems more appropriate than the “Neighborhood”.

Thirdly, we write out row {a0, …, aj, …, an} containing the sequence of states that are taken from the
cells on the lattice Z

N
 where the enumerated vectors comprising our Mask end up (see Fig. 5 for

illustration).

Fourthly, we check Transition Tables R-x, R-y, R-z, R+x, R+y, R+z on a subject of whether or not such a

row exists in any of the Transition Tables. If we find such a Table, we put its index as the state of CA

in the next moment of time (t+1). For example, if row{a0, …, aj, …, an} appears in table R-x , then the
next state is -x ; if some other row appears in table R-у , then the next state is -y, etc. Because no rows

of the Transition Tables can be the same, there is only one state of lattice Z
N
 in each time point.

Fig. 5 shows the transformation of arbitrary selected element from integer lattice Z
2
. It illustrates a

single step of operation of a Table CA for a primitive Mask in two dimensions on a closed lattice (i.e.,

the lattice without “boundary”) in this particular case, a surface of 6 x 6 torus.

(3)

(2)

5

Fig. 5. The illustration of one step of the Table CA “run” for a primitive Mask in two dimensions. For

clarity, the Automaton run is shown for a single cell.

In accordance to CA definition, the same operation should be performed at once for all cells of CA.

Fig. 6. The operation shown in Fig. 5 are performed for all the cells at once.

Let us compare, for example, the run of our Cellular Automaton with that of well-known CA named
Rule 30 by Stephen Wolfram[1] (see Fig. 7).

Fig. 7. The plot “Automaton state vs Time” for Wolfram’s Automaton “30”.

Rule 30 has 2 states of the cells ({0;1}) while our CA has 6 ({-x;-y;-z;+x;+y;+z}). Rule 30 works or

runs (if we consider the “works” through our terms) for a primitive (von Neumann’s) Mask (1,1) in

one dimension. The binary decomposition of 30 is abbreviation for the transition rules (see [1] and
Table 1).

http://en.wikipedia.org/wiki/Stephen_Wolfram

6

Table 1. Transition rules for Rule 30 Automaton.

From those rules, we can determine the Transition Tables:

0 1

0,0,0 0,0,1

1,0,1 0,1,0
; .

1,1,0 0,1,1

1,1,1 1,0,0

R R

We can notice that contrary to our Automaton, CA Rule 30 is not reversible (see explanations below).

Any Transition Table has a dedicated column (numbered as “h”) which is associated with the Zero

vector that we added to the Mask. It is logical to assume h=0 for the dimensions greater than one. Yet,

in the case of one dimension, it is more convenient to leave the "natural” order (for instance, h=1 for

Automaton Rule 30).

3) The obtained Transition Tables are interdependent and can be obtained from table R-x after

following substitutions:

1 2

3 4 5

: { , , , , , }; : { , , , , , }; : { , , , , , };

: { , , , , , }; : { , , , , , }; : { , , , , , }.

x y z

x y z

R e x y z x y z R e z x y z x y R e y z x y z x

R e x z y x z y R e y x z y x z R e z y x z y x

These substitutions form a group; its multiplication table (u x v) is shown below

Fig. 8.

4) Our Automaton is reversible. The inverting Transition Tables are calculated from the same Table
R-x using following substitutions:

1 1 1

1 1 1

:{ , , , , , }; :{ , , , , , }; :{ , , , , , };

:{ , , , , , }; :{ , , , , , }; :{ , , , , , }.

x y z

x y z

R x z y z y x R y x z x z y R z y x y x z

R z x y x y z R y z x z x y R x y z y z x

5) When getting started from any initial state of the integer lattice (Z
N
) filled with only -x and + x

(further we refer to this the state as the Beginning Point or BP), our CA will last forever. In other

words, all the time as CA runs, only those states appear which are present in tables R.

6) At least one row containing only letters “-x” and “+ x” must be found in tables R-y or R+y or R-z

or R+z. (In other words, the “unionized” table R-y U R+y U R-z U R+z should contain this row).

7) All points (vectors) in the Mask are important. In other words, no point of the Mask can be safely

eliminated without changing the Automaton.

Definition 1. (Definition of a Correct Mask). If, for a given Mask, it is possible to find CA meeting
all seven conditions, then we call this Mask Correct. If it is not possible (or until proven otherwise),

we call such a Mask Incorrect.

Let us explain why the very existence of Correct Masks is a “miracle” of its kind. It is far from being
obvious that at least one Mask is Correct in some N-dimensional space. From point 5 it follows that

the Automaton must be able to make at least the first step, therefore, the Tables should contain all the

(4)

(5)

(6)

7

2
n+1

 states formed from the letters of the same type “x”. At some initial conditions after the first step

(see point 6) there must appear a new letter (not “+x” or “–x”) in the states. Now, we are curious
about the way the rows containing these letters are transformed. Assuming that we know the answer,

it will immediately be transferred into six Transition Tables by performing substitutions, see

expressions (5). Note that it will also be transferred into six Inverting Tables and, in the end, into the

same Transition Tables. Each step causes new transfers. It may very soon turn out that two identical
rows appear in two different tables, and this is prohibited.

Yet, a situation is not that bad. As a matter of fact, there is a huge number of the Correct Masks and

apparently in all dimensions.

Theorem 1. All Masks in one and two dimensions which are not colored by black in Fig. 9 (at least

with n<9) are Correct.

Fig. 9. In the entire figure, black color means that the Mask is Incorrect. Panel A shows the Correct

Masks (m, k) in one dimension – those are the cells with the numbers inside, colored differently from

black. Because the number of rows in Tables R is always odd, we introduce important parameter: c1/2=(c-

1)/2, which value is indicated in the cell. Numbers in cells: on the top – the number of points in a Mask;

on the bottom – value c1/2 for the same Correct Mask; a question mark means that c1/2 was not calculated,

yet most likely, the Mask is Correct. Values of represent the “density” of our Table CA for seven Masks

(see explanations in the text). Bordered area to the left shows calculated for the cells indicated by

arrows.

Panel B shows c1/2 for the first Correct Masks in two dimensions. We remind that in this case n equals the

number of cells in the Mask minus one whereas value c1/2 will be explained in the next chapter where we

will deal with the Transition Tables. Further details are discussed in the text.

Panel B in Fig. 9 also shows: the upper row – «a mandatory part» of all normal Masks in two

dimensions and a primitive Mask ("cross" with n=4, c1/2 =40); the second row – examples of Masks
for n=5; the third row – examples of Masks for n=6; and the bottom row there is “the transition from

von Neumann neighborhood to Moore neighborhood” – the clockwise “attachment” of the cells to the

primitive Mask that produces the Correct Masks with n=5, 6, 7, and 8. It is “obvious” that all

primitive Masks in all dimensions are Correct, and values c for these Masks equal 9
N-1

 for any N,
where N is the dimension of the space. The second row (see Fig. 9B) shows two examples of Correct

Masks for n=5 composed by the addition of points (x=1, y=1) or (x=2, y=0). The third row of panel B

in Fig. 9 also shows Correct Masks for n=6: one way to built the Correct Mask for n=6 is using the
x-axis symmetry and another one, using central symmetry (с1/2 for n=6 are shown in the

corresponding cells). In the bottom panel, we add the cells, one by one, to the mandatory part of the

two-dimensional Mask starting from the top-right “cell” and then going clockwise. We obtain four

8

Correct Masks: (n=5, c1/2=85); (n=6, c1/2=181); (n=7, c1/2=240); and (n=8, c1/2=424). The black cells

in Fig. 9B indicate some “additions” that yield the Incorrect Mask.

Parameter ρ in Fig 9 is the “density” of corresponding CA, e.g., 11% for Mask (1,1); 12.5 % for Mask

(3,1) etc. We define here the “density” as the ratio of the number of rows in six matrices R to a

number of all possible states 6c/6
n+1

=c/6
n
 expressed in percent. It is hard to imagine how accurately

our CA must walk! In all states, except the first two, more than 90% of the rows are “forbidden”. Yet,
those CA in its time propagation never set a foot on the “forbidden” ground. That is why it can be

considered as a “miracle” of its kind.

Proof. Note, the proof for Theorem 1 is obtained using personal computer. The software program
with the source code (common to dimensions N=1 and N=2) can be found on the site

http://k3e.hop.ru/proofT1.zip.

In the beginning, we present the Transition Tables for primitive Masks in one (Fig. 10A) and two

(Fig. 10B) dimensions as well as for Mask (3,1) in one dimension (Fig. 10C).

Fig. 10. Tables R-x for Correct Masks. Panel A for Mask (1,1); panel B for primitive Mask in two

dimensions; panel C for Mask (3,1) in one dimension. The explanation is in the text.

Let us explain what is depicted in Fig. 10. In each of three panels, we move from the left to the right.

Some rows in Fig. 10 containing only letter “y” and marked with inclined lines (shading) indicate that

these rows are important to perform the “mathematical induction” step in our proof, which is

conducted further on in the text. Let us consider letter “y” (note that in case of letter “x” and “z”
everything is considered similarly). To prove the Correctness of our Mask, first, we need to make sure

that our table contains all the 2
n+1

 rows consisting of one and the same letter “x”. The R-x table has a

row containing only “-z”. Therefore, table R-z has a row containing only “-y” (see Eq.5, point 3), and

table R+x has a row containing only “+y”. The remaining (2
n+ 1

-2) / 2 variants are distributed over
tables R-x and R+ z. Moreover, the variants in R-x are complementary to variants R+ z (note that all rows

from R-x are multiplied by -1 in R+ z). Let us check the number of shaded rows. Consider panel A (Fig.

10): on one hand, we have (2
2 + 1

-2)/ 2 =3 rows containing only letter “y” . On the other hand, if in
the same panel A, we sum up the numbers in the column S for rows containing only “y” (S stands for

symmetry, explained below) then 1 + 2 = 3. Panel B (Fig. 10): similarly, using the above expression

we can find (2
3 + 1

-2)/ 2 = 7 rows or , on another hand, summing up number in columns S, we get the
same number 7 (S =1 everywhere because of no symmetry for the Mask). Finally, panel C: (2

4 + 1
-2

)/ 2 = 15 or summing up the rows with account of their symmetry we get 1 + 4 + 4 + 2 + 4 = 15 lines.

http://k3e.hop.ru/

9

Column “ ” is just a sign of a letter in “zero” point (column) of table R (the relationship is shown by

the connected dots; Fig. 10). More detailed information about that column will be given in the next
chapter.

Column “Npr” (see Fig. 10C) shows the number of instances the given configuration appeared in our

proof (see below). The values in this column are given in multiples of c (i.e., this entire column

should be multiplied by 81). Then for Figs.10A and 10B it turns out that this entire column is filled
only with value 1. We could have hypothesized that all the values in column Npr were multiples of c

all the time. But this is not so. This hypothesis turns invalid already for the next Correct Mask (5,3).

Column “S” serves to reduce the list of entries. Each row can be found S times in that list, taking into
account the axial symmetry (Fig. 10A) or square symmetry (Fig. 10B).

Let us return to the proof. If table R-x is already known for some Mask, then the following action on

the proof is clear. Yet, we are not certain about the outcome of such a process.

We made the first step in the mathematical induction, i.e., we showed that all 2
n+1

rows containing

only letter “x” are present in the Transition Tables.

Now, let us move on. Given: assume that at time point t in every point of CA the content of the Mask

is permitted, i.e. all the rows in the Masks belong to tables R. It is necessary to prove that at the next
time point (t +1) our CA will have the same property. The solution can be found through the proof by

exhaustion performed on a personal computer.

Let us unite all Transitions Tables (R-x, R-y,R-z, R+x, R+y,R+z) into one Table and named it R
(6)

. It has
6c rows numbered 0, 1, … k, … 6c-1 and the numbering of its rows has the following construction.

First, the rows of table R-x are placed in a descending order in accordance with the selected seniority

-x >-y >-z >+x >+y >+z. Other Transition Tables can be found by using corresponding substitutions,
i.e., using the rule (5) from point 3, and numbering in these Tables does not change relatively to that

in R-x. After that, the Tables are concatenated (here it means the second one is attached to the bottom

of the first one, etc) in similar order: R-x … R-y … R-z … R+x …R+y …R+z . To determine the specific

Table for the row with number k, one has to determine the floor function [k/c], where c is the number
of rows in a single Table of our Mask.

Let us introduce a new term. Let us name Mkj as the Mask filled with the row numbered kj from R
(6)

;

kj = 0, …, 6c-1 (see an example of such a filling in Fig. 11). We call set {k0, k1,, …kn} from n+1 (n –
number of the points in the Mask) filled Masks “illegal” if after the placement of set Mk0 into a point

with number 0 of our Masks, Mk1 – into a point with number of 1 our Mask, etc., some point of our

lattice will be filled with two different letters, that is the letters not equal to each other. Otherwise, we

call our set “legal”.

Now consider, for example, the primitive Mask in two dimensions (see panel B in Fig. 10). In Fig.

10B a natural sequence of row numbering in the considered Transition Table R
(6)

 is truncated (or

skipped) in many places due to symmetries (e.g., instead of writing in three rows, one after another,
we have placed a single row and indicated the corresponding symmetry). Yet, if we write out all the

rows of combined Transition Table R
(6)

 as they are, then it will turn out, that for instance, rows

number k0=220; k1=165; k2=221; k3=358; k4=177 form a “legal” set (see Fig. 11).

10

Fig. 11. “Legal” set {220, 165, 221, 358, 177} in case of a primitive Mask in two dimensions.

It is clear that only a limited number of all sets are “legal”. For example, it is easy to see, that if we

have any “legal” combination {k0, k1, …, kn} and h=0 (see Fig. 10 to determine h) then any set {m, k1,
…, kn} where m it is not equal k0, will be “illegal”.

Further we find “legal” sets {k0, k1, …, kn} using the n+1 nested loops (each loop considers 6c variants

for ki) thus going through all possible combinations of ki (Fig. 12).

Fig. 12. Five nested loops in the proof of Correctness of a primitive Mask in two dimensions. In each

loops, it is checked: i) whether the row {i0, i1, i2, i3, i4} belongs R
(6)

; and ii) whether this row belongs to

R
-1

J, where J – the value of the Mask kh (h=0) in a Zero point in time t. In case of Fig. 11, row {-z,-z,-z, y,-z}

belongs to R-x and to R
-1

+x.

For each “legal” combination, we determine a row in the Mask in consecutive point in time – {[k0/c],

[k1/c],…,[kn/c]} – and make two checks: i) whether or not the row under consideration can be found

in R
(6)

 and ii) whether or not the inverse transformation works. After that, we add “one” to column Npr
corresponding to that row and move on to a next step in a cycle...

We reach the end, and declare that the Theorem is proved.

So, we have got a key observation. If we have the Transition Tables the proof of Correctness is

always (at least for the Masks shown in Fig. 9, site k3e.hop.ru/proofT1.zip) leads to a success. This
fact can be considered as the greatest mystery in mathematics.

4. Definition of a Simple reversible Automaton for the Mask

Let us return to the question how one obtains the Transition Table. To answer this, let us briefly
describe the results presented in Ref [2].

11

Let us introduce the concept of Simple reversible Automaton on a Mask. It works on the same lattice

(Z
N
), yet closed on all sides (because we require a limited number of states), and has 3 states A, B, C.

Here we describe an ordinary second-order Automaton found by E. Fredkin that was studied by many

authors, see for instance Refs [3]-[5]. Each consecutive state depends on whether the Mask

superimposed with a given point contains state C or not. In Case 1 (when the Mask contains state C)

the following transitions are made A => C, B => A, C => B. In opposite Case 2, (no state C is
contained in the Mask) the following transitions are made: A => A, B => C, C => B. It is well known

that Fredkin’s Automaton is reversible (see, Ref [6]), thus to change the direction of time, it is

enough to replace all B with C and all C with B. Let us fill the cells only with the states taken from A
and C (t=0) and consider the of the Automaton runs from the Beginning (Start) Point to the Mirror

Point, and then back to the Beginning Point (Fig. 13).

Fig. 13. Panel A – illustration of Simple CA run. One needs to take a notion that each grey “band” shown

in this figure is actually a torus (it is rather difficult to depict the considered operations on a torus). Any

run that starts from the Beginning Point (i.e., the state filled only “A” and “C” cells) follows the circle:

the Beginning Point => the Mirror Point (MP also comprises cells “A” and “C”) => Beginning Point. We

have two runs: Ordinary and Additional (in the initial conditions of the latter, the replacement AC is

made). Ordinary and Additional runs may have different Half Periods: T and T*. Yet, for some Masks

(the Correct ones), it becomes clear that after removing all cells B from both pictures, the pictures will

look the same after making replacement all AC. Panel B shows the picture “Automaton state vs time”

for any of our runs (Ordinary or Additional). The straight yellow lines indicate the Beginning and Mirror

Points. Orange lines connecting the centers of cells C show distinct C/B “bands” which do not cross each

other. Further explanations see in the text.

An additional commentary to Fig. 13. A normality of the Mask is necessary for two reasons. The first
reason is that the Beginning point (BP) comprising cells A and C should have the Mirror point (MP)

which is also composed of cells A and C (see Fig. 13A). The second reason is that the run of

Automaton on the plot “Automaton state vs Time” follows the distinct and non-crossing bands (see
Fig. 13B).

We will remind, in brief, how it has been proven.

Imagine a chess figure which makes only a one-unit move forward or backward along any of axes of
the N-dimensional integer lattice (at each step, the figure can move along some arbitrary axis); also

note that it is permitted for this figure to make a move on the field where the figure was in the past. It

is obvious that the figure can eventually visit all the points of any closed integer lattice and return to

its starting position. So, using the course of this figure we transform any N dimensions into one as
shown in Fig. 13B). After that, to prove that our bands do not cross each other bands, we use the

property of a normality, see Ref [2].

Further, there is the main observation that, for any Correct Mask, CA of arbitrary size, and any initial
conditions selected in the diagram “Automaton state vs Time “ where all B cells are removed, pictures

for the “Ordinary run” and “Additional run” (wherein the replacement of the initial conditions A C

is made), literally coincide after the replacement all of cells A C.

12

Consider the issue again and in detail. Let us name the diagram “Automaton state vs time” for the

normal run of Automaton as the Ordinary World; and a similar diagram for the “additional run”, as
Parallel World. First, let us introduce the terms describing the Ordinary World. The state of Simple

CA in point r as a function of time t is denoted as

(,) { ; ; }ABCf t r A B C

Then, let us introduce function b which indicates whether a given cell is the B cell at a given time, or

not

1, (,)
(,)

0, (,)

ABC

ABC

if f t r B
b t r

if f t r C A

Transformation functions (with B removed) are defined as follows:

0

0, (,)
((,),)

1, (,)

i
ABC

AC

i t ABC

if f t r A
t b i r r

if f t r C

0

1, (,)
((,),)

, (,)

i
ABC

A

i t ABC

if f t r C
F t b i r r

t if f t r A

0

1, (,)
((,),)

, (,)

i
ABC

C

i t ABC

if f t r A
F t b i r r

t if f t r C

See for example Fig. 14…

Fig. 14. Illustration to finding the Transition Tables R Panels A and B: the diagrams “State of Automaton

vs Time” for two Automaton runs (for Ordinary and Parallel worlds). Panels C and D – the

corresponding transformations of cells with letters “A” and “C” after removal of all cells with letters

“B”.

(7)

(8)

(9)

(10)

13

Fig. 15. Illustration of the transformation step shown in Fig. 15 – i.e., the transition from panel A to panel

C. First, we remove letters B from the cells (empty the cells of letter B). After the removal, letters “At “

and “Ct“, where t is the row number (time coordinate) in the original (t, r) space , move up to fill the

vacant spaces. After that, we apply Eq. 10 to “At“ and “Ct“, thus converting the “colors” into numbers,

and obtain Fig. 14C.

Let us take the primitive Mask in one dimension on the closed row (a ring) of ten points, two points of

10 being colored with two different (“opposite”) colors. Yet, we repeat one more time, that all our

methods can be applied without any changes to any Correct Mask in the N-dimensional space,

for Automaton of any size, and for any initial conditions.

Let us introduce four new functions as follows:

(,), (,) 0
(,)

(,), (,) 1

A AC

AC

C AC

F r if r
F r

F r if r

(,), (,) 1
(,)

(,), (,) 0

A AC

CA

C AC

F r if r
F r

F r if r

Note that the construction of FAC (τ, r) was shown merely as an intermediate supplementary function
to demonstrate the construction of similar function FAC

(3)
 with the only difference in mod 3 (we

emphasize that mod 3 is an important manipulation, it makes all other things happen):

(3)
(,)mod3, (,) 0

(,)
3 (,)mod3, (,) 1

A AC

AC

C AC

F r if r
F r

F r if r

(3)
3 (,)mod3, (,) 0

(,)
(,)mod3, (,) 1

A AC

CA

C AC

F r if r
F r

F r if r

It should be understood that these operations create completely different tables FAC
(3)

 and FCA
(3)

. We
introduce new notations: 0  -x, 1  -y, 2  -z, 3  +x, 4  +y, 5  +z. We can see from Fig.

16 that these notations definitely give us the Transition Tables. The first Table is for one direction in

time, and the second, for the opposite one. (If we have taken FCA function instead of FAC one, it

would lead to replacement R  R
-1

).

(11)

(12)

14

Fig. 16. Continuation of illustration shown in Fig. 14. In this figure, panels (A, C) and (B, D) show the two

pairs of practically identical Tables, the only difference between the top Table and bottom one is that in

the bottom one, the numbers in the cells are replaced with letters (see straightforward conversion rules

depicted on the left and right sides). Our task at this point is to find NEW rows in the table R-x . In each

drawing (see Figs. 16C and D we selected three arbitrary points – the results of the F
(3

AC and F
(3)

CA

functions where the input parameter is the same cell (, r) in the corresponding top panels (are shown in

ovals). For three points we can determine 6 new rows in different tables R (the corresponding rows are

allocated in a gray three-cell rectangle). In the table R+x – a row {+y,-z,+z}; in the table R
-1

+x – a row

{+z,+z,+z}; in the table R-x – a row {- y,+y,- y} etc. All these rows from the inverted substitution (see Eq.5-

6) are then transferred to the table R-x. Further these rows are compared to the ones that are already

present in R-x, and if the new rows aren’t there, we add those rows to the Table.

Now it is clear how to obtain Transition Tables. First, we set random initial conditions from A and C
states defined on “small” integer lattices that are closed in all directions and form the torus and turn

on a Simple Automaton on the Mask. Then, for every three moves of a Simple Automaton on the time

scale, we can find L (total cell number) multiplied by 2 states in each of our new tables F
(3)

AC .
Finally, we stop after we reach the point of half-cycle and analyze the result. Then we change the

initial conditions and repeat the trial. At each point in table F
(3)

AC , we can determine 12(!) new rows

R-x taking into account the inverse motion. If the Mask is Correct, then R-x will be entirely filled in a

short time. After that, it is necessary to perform standard check for Correctness (see Chapter 3).

5. Definition of a Perfect Mask. Strings

So, let us repeat again. Let us take a look on two runs (we call it as Standard and Additional) of i) a

Simple Automaton on the Mask (fABC; as a function of time t) and ii) Table Automaton on the same
Mask (F

(3)
AC; as a function of time τ) induced by Simple Automaton. The cells we have obtained are

the same and numbered with integers r.

In the case of Simple Automaton, our run (the Ordinary World) starts with state filled with cells

containing letters “A” and “С” at time t=0; Fig. 13A, 14. In the additional run (Parallel World), the
replacements AC take place.

In the case of Table Automaton, our run (the Ordinary World) starts with state filled with –x (cells

with letters “A” in Simple Automaton; t=0) and +x (cells with letters “С” in Simple Automaton; t=0).
In the additional run (Parallel World) of the Table Automaton the replacements -x x take place.

Let us introduce function (,r):

(3)

(3)

1 (,)
(,)

1 (,)

AC

AC

if F r x y z
r

if F r x y z

and write out two formulas (14, 15) connecting our two Automatons.

(13)

15

In any point r, parameters t and τ are connected by the relation:

0

3 1
(,)

2 2

u

u

t u r

Fig. 17. Illustration of Eq. 14.

So

, (,) 1
(,)

, (,) 1
ABC

A if r
f t r

C if r

Let us turn to the Parallel World (the functions that correspond to that World are shown with the
asterisk), and let us introduce an simple lemma...

Lemma 1. Let us designate substitution e3={+x,+z,+y,-x,-y,-z} as S. Let us designate the state of

Lattice Z
N
 at time as L with made substitution S as S(L). So, for any Correct Mask if L transfer to

L then S(L) transfer to S(L).

Proof . We take our Transition Table R
(6)

 and show that for any row k from R
(6)

 the following is

correct : if k belongs to Ru and S(k) belongs to Rv, then u=S(v).

Let’s take u=-x. The row k belongs to R-x. The substitution for R-x equals e. From Fig. 8 we have:

S*e=e3*e=e3 so v=+x and –x=S(+x). Suppose that u=-y. The row k belongs to R-у. From Fig. 8

S*e1= e3*e1=e5 so v=+z and –y=S(+z). The remaining 4 letters are checked in the same way. So we

declare that the lemma is proven. Fig. 18A illustrates formula u=S(v) for two random pairs of rows in
Transition Tables for Mask (1,1).

(14)

(15)

16

Fig. 18A – illustration of the formula u=S (v) for three rows ({-x, + z, -z}, {-z, + y, + y}, {-y, -y, -y}) of the

Transition Tables for Mask (1,1) . Panel B illustrates the operation of Eq. 16 and Consequence 1 for our

case depicted in Fig. 14.

So, we have

Consequence 1. So, for any Correct Mask (the Ordinary World) = S(the Parallel World) and (the
Parallel World) = S(the Ordinary World) for Table Automatons.

Proof . It is obvious that L =S(L*). Using the induction we get that for all elements of lattice L the

following is carried out: L =S(L*) for any . See Fig. 18B.

Consequence 2. So, for any τ and r one can write

*(,) (,)r r

We will enter the designation

*

1/ 2

0 0

(,) (,) 2
u u

u u

u r u r d

Our final observation is that: if all this is correct for the Ordinary World then, one can write that for

the Parallel Word and for all τ и r the following is correct

*

1/ 2 1/ 2

3 3
, ,

2 2
ABC ABCif f d r A f d r C

*

1/ 2 1/ 2

3 3
, ,

2 2
ABC ABCif f d r C f d r A

Let us talk about the Strings. What do we mean by Strings?

Our Strings are constructed using two halves: one is taken from the Ordinary World and another –

from the Parallel One on the plot “Automaton state vs Time” at some given point of time . Below
we show our String using a simple example (Fig. 19).

(17)

(18)

(16)

17

Fig. 19. Panel A shows the two superimposed runs for Mask (3, 1). It seems to be chaotic at the first

glance. Panel B: vertical bars designate halves of Strings d1/2 (see Eq. 17) from the Ordinary World (pink

bars) and Parallel one (green bars). It is not easy to recognize the String in the picture taken as a whole,

but it is there. The situation is very unusual. Both Automatons work completely independently, yet the

two runs are connected through some sort of “wormhole”.

Let us show in the same drawing each of two one-dimensional runs of Simple Automaton for Masks
(3,1). The length of row (closed into a ring) is 15 cells. Initial conditions are as follows: one point of

“opposite” color (in Ordinary World: all cells C, one cell is A; in Parallel World: all cells A, one cell

is C). Moreover, we use line of different colors to depict C/B «bands» for both runs: the green line

indicate the C/B band in the Ordinary World while the blue line shows the C/B band in the Parallel
World. Horizontal strips shown in panel A of Fig. 19: x (light-blue) designate t mod 3 = 0 , band y

(white) t mod 3 = 1, and z (pink) t mod 3 = 2, where t is time (see above).

So, there goes a reference run presenting a single step of Table CA. Over the course of this step, one
and a half steps of Simple CA occur. The dashed shaded horizontal and vertical cells – representing a

“half” of the Strings from the Ordinary World and the Parallel one – move down one cell (if there is

no cell B beneath these cells) or two cells (if there is cell B beneath these cell, then one needs to jump
over it). At every step and in every cell, the following event happens: either Ordinary World can go

ahead of the reference (and then the Parallel World stays behind by the same amount) or lag (and then

Parallel World is ahead).

Parity of the String width (d=2*d1/2; the distance between the differently shaded cells) in each time

point of coincides with the parity of the number itself (see Fig. 19B).

At the Half Period point, Strings are stretched into a line with width λ = T – T* from Ref [2].

(Note that if we had taken normal but Incorrect Mask (5,1) instead of Mask (3,1), we would have

obtained no Strings at all. Our beautiful picture from Fig. 19 would have turned into a mess at once).

Coming back to that chess figure from Section 4 which carries out converting the N dimensions of

integer lattice into a single one, the author suggests that whatever the method of transformation is

chosen, the String will keep the same appearance: i.e., the distance (taken at modulus) between the

adjacent cells (in one measurement) for each half of the String will never be more than one.

In this case we will say that our String is continuous.

18

Definition 2. (Definition of a Perfect Mask). Assume that i) Eqs. 15, 18 are satisfied for some

Correct Mask and for every run of its Simple Automaton and ii) the String keeps its continuity
whatever the method of transformation is chosen, then the Mask is Perfect (otherwise – Imperfect).

In Section 4, we did not use the notion of Parallel World anywhere. In principle, the Correctness of

Masks could exist without existence of Eqs. 15, 18 and continuity of the Strings. But, it is obvious

that these two things are connected directly. If the Mask is Correct, that means there Eqs.15,18 exists
and the Strings are continuous; if the Mask is Incorrect then Eqs. 15, 18 do not exist and thus the

“right” Strings do not exist either. Naturally, the fact that the Mask is Perfect leads to a considerable

reduction in the number of possible “ways” (rows of the states, parameter , Fig. 9) and as a
consequence, to a significant reduction (in a statistical sense) in the values of both half periods T and
T* (see Ref [7]).

Immediately, there arises the Main problem (more correctly, a lot of problems). We denote it as the

“Problem of the Number 3”. We do not know, yet, how broad is the problem. It is quite possible that

it can be a very interesting problem in a broader mathematical sense.

Assume we know that the Mask under consideration is Correct. More accurately, assume that we have

found the Transition Tables with the aid of personal computer and proved by exhaustion that the

given Mask is Correct. Now, we need to prove that the same very Mask is Perfect. Here arises a
fundamental question of “why the proof of Theorem 1 always works”. In some sense, it can be the

case that we only have found a new and “better looking” wrap for the Correct Masks. How can we

solve this problem? Well, it is necessary to investigate algebraically our Strings in N dimensions.

Obviously, it is quite a challenging task.

How many “problems” do we have? In other words, how large is the number of all Correct Masks

that we can identify? We introduce, informally, certain number K which is the approximate number of

Masks in all dimensions, for which the Jaguar – the most powerful supercomputer on this day
(February 2016) – can prove the Correctness of all the Masks in one day or maximum a week. (This

definition, obviously, is necessary to correct somehow. It is “well known”, for example, that in one

dimension, all Masks (-2
k
+1, 2

k
+1) are Correct and c (= 81) for those Masks is not very large. We, of

course, do not consider such Masks!) We do not know how large is K. It can be equal to 10,000 or

may be equal to a factorial of 100. No doubts that the Jaguar is a powerful computer. On the other

hand, the number of inspections grows very rapidly with the increase of n and c. However, the

inspections use the algebraic operations/steps of a similar type. So perhaps it is better to do the
calculations using a specialized computer.

Verifying the Сorrectness of a particular Mask can soon become a boring task (in that case that all the

Masks, one after another, turn to be Correct), so we will focus only on a calculation of c for Masks
but in larger dimensions and for larger n. Yet, to do this “truncated” task, one also requires an aid of a

powerful computer. In view of that, let us introduce another number Kcor. This is the approximate

number of Masks for which the most powerful supercomputer can correctly determine the value c
after a week of operation under condition that the considered Masks are Correct at 95% confidence

(estimated from other considerations). It is clear that Kcor >> K.

As of today, the general program has been written to prove the Correctness of any Mask in one and

two dimensions. Site http://k3e.hop.ru/proofT1.zip, shows the proofs of the Correctness for all of
Masks from Fig. 9 with n<9. The breadth of the proof at this point is limited by a performance of

author’s personal computer

http://k3e/

19

Fig. 20. Two screenshots of the program proofT1.exe. Determination of the Correctness of the Mask (23,7)

in one dimension (panel A). The definition of the Transition Table for one of the Correct Masks from Fig.

9B, two-dimensional case (panel B).

In brief, Mathematical Strings definitely exist and in huge numbers. The author still does not know

the answer to the question: whether or not all central-symmetric(!) Masks are Correct Masks in all

dimensions. The author employed the personal computer for weeks searching for abnormalities. The
dimensions 1, 2, 3 have been checked. The criterion of Incorrectness was getting 2 in the expression

AC AC* (see Fig. 14). Yet, not a single Incorrect Mask among central-symmetric ones has been

found. To make the situation more intriguing, we note that there exist special Incorrect but “self-
healing” Masks-Strings [8]. We cannot exclude a situation that starting with some n and N our proof

stops working. Yet, the author tends to believe that a probability of such an outcome is extremely low.

We suggest that all the material presented in the above to be named as the foundation of Theory of
Mathematical Strings. Note: our theory should not be confused it with a well-known theory of strings

in physics.

6. Conclusion

Let us briefly summarize our findings.

The Number 3 (in other words, a group from Fig. 8, or configuration 2x3) generates the unimaginable

number of different symmetries in the N-dimensional integer lattice Z
N
. Here we remind that the

number of symmetries is greater than the number of central-symmetric Masks in the N-dimensional
integer lattice Z

N
. Computer calculations indicate (yet, indirectly) that in Z

N
 with large N “almost any”

Mask is Correct, and each Correct Mask represents a new “symmetry” in this Z
N
. The author

developed the approach to finding the Correct Masks for low-dimensional Z
N
. Utilizing the same

approach (yet exploiting capabilities of a very powerful computer) it is feasible to find the Correct
Masks for integer lattices of higher dimensions.

Our main idea is illustrated by the following Fig. 21.

20

Fig. 21. In fact, any N-dimensional lattice by action of numerous Strings turns into N-dimensional

(“latticed”) sphere at large N.

It seems certain that these symmetries are directly related to the physical nature of space.

We do this to suggest that professionals in the field of theory of numbers should take over the
theoretical physicists concerning the question of constructing a consistent theory of the Universe.

Yet, while physicists argue and debate about various peculiarities of string theory, one can

contemplate how to use the theory of Mathematical Strings to build a consistent model describing
fundamental properties of space.

7. Acknowledgements

The author thanks Drs. Eugene Moskovets and Maxim Olshanii for reading and correcting this

manuscript.

References

[1] Wolfram, S. (1983). «Statistical mechanics of cellular Automaton». Rev. Mod. Phys. 55 (3): 601–644.

DOI:10.1103/RevModPhys.55.601

[2] A. Kornyushkin. The X-problem of number 3. http://arxiv.org/abs/1308.0136

[3] Margolus, Norman (1984) “Physics-like models of computation”, Physica D: Nonlinear Phenomena 10:

81–95, Reprinted in Wolfram, Stephen, (1986) Theory and Applications of Cellular Automaton, Advanced

Series on Complex Systems 1, World Scientific, pp. 232–246; A. Adamatzky (Ed.) (2002) Collision-Based

Computing, Springer-Verlag, , pp. 83–104.

[4] Vichniac, G. (1984) “Simulating physics with cellular Automaton”, Physica D: Nonlinear Phenomena 10:
96–115.

[5] Wolfram, Stephen. (1984) “Cellular Automaton as models of complexity”, Nature 311 (5985): 419–424.

[6] Toffoli T., Margolus N. (1987) Cellular Automaton Machines: A New Environment for Modeling, MIT

Press Series, Section 14.2, “Second-order technique”, pp. 147–149; Wolfram, Stephen (2002), A New

Kind of Science, Wolfram Media, pp. 437.; McIntosh, H. V. (2009) “One Dimensional Cellular

Automaton”, Luniver Press, pp. 205–246.

[7] A. Kornyushkin. About a Discrete Cellular Soliton (computer simulation). http://arxiv.org/abs/1109.4552.

[8] A. Kornyushkin. About New Mathematics: Automaton of pure number three. (О новой математике:

Автомате Чистой Тройки). LAP Lambert Academic Publishing - ISBN: 978-3-659-33017-9.

Appendix 1.

Designation Variable type Key value found in the article

N Natural The dimension of the Lattice Z

n Natural Number of points in the Mask minus 1; the number of columns in the Transition

Tables minus 1 (Zero point included in the Mask by definition)

с Natural, odd The number of rows in a single Transitions Table. Since c values are always odd, we

use another designation с1/2 = (c-1)/2

https://ru.wikipedia.org/wiki/%D0%98%D0%B4%D0%B5%D0%BD%D1%82%D0%B8%D1%84%D0%B8%D0%BA%D0%B0%D1%82%D0%BE%D1%80_%D1%86%D0%B8%D1%84%D1%80%D0%BE%D0%B2%D0%BE%D0%B3%D0%BE_%D0%BE%D0%B1%D1%8A%D0%B5%D0%BA%D1%82%D0%B0
https://dx.doi.org/10.1103%2FRevModPhys.55.601
http://arxiv.org/find/cs/1/au:+Kornyushkin_A/0/1/0/all/0/1
http://arxiv.org/abs/1308.0136
http://en.wikipedia.org/wiki/Norman_Margolus
http://en.wikipedia.org/wiki/Physica_%28journal%29
http://en.wikipedia.org/wiki/Stephen_Wolfram
http://en.wikipedia.org/wiki/Andrew_Adamatzky
http://en.wikipedia.org/wiki/Physica_%28journal%29
http://en.wikipedia.org/wiki/Stephen_Wolfram
http://en.wikipedia.org/wiki/Reversible_cellular_automaton#CITEREFToffoliMargolus1987
http://www.wolframscience.com/nksonline/page-437-text
http://arxiv.org/abs/1109.4552
http://www.translate.ru/dictionary/en-ru/designation
http://www.translate.ru/dictionary/en-ru/variable%20type

21

h Natural+”0” The column number in the Transition Table responsible for the Zero point of the

Mask

 Real, (%) = 100*c/6n ; “density” of the corresponding Table CA

T, T* Natural Half periods of the return of the Simple CA: for usual run – T; for additional run –

T*

Natural = (T+T*)/3; half period of the return of the Table CA

Integer = T-T*; fixed width of a String at the moment of time corresponding to a half

period

d Integer String width

(-1/+1) The decrement/increment of the String width determined for every point (cell) of the

Lattice and in any time

m Natural, odd The left side of the one-dimensional Masks (m, k)

k Natural, odd The right side of the one-dimensional Masks (m, k)

K Natural, big Approximate number of Masks for which the most modern supercomputer can prove

its Correctness after a week of operation

Kcor Natural, very big Approximate number of Masks for which the most modern supercomputer can

correctly determine the value c after a week of operation, under condition that the

considered Masks are Correct with 95% confidence (estimated from other

considerations)

Appendix 2.

Example of a real code for program “proofT1.exe”. The central place in the program is the check whether the

Mask is Correct. Programming language is C++. Comments have been removed to save the space.

GRAN=2*sm00[8]+1; K162=Cr1; K117=Cr1/6;

mK162=Cr1; if(CheckBox68->Checked) mK162=mK162/6;

for(lll1=0; lll1<K162; lll1++) VES[lll1]=0;

//_____________________________ for(lll1=0; lll1<K162; lll1++)

for(lll1=0; lll1<mK162; lll1++)

{

 for(klll9=0; klll9< GRAN; klll9++)

 ssll[klll9][0]=-1;

 for(klll9=0; klll9<9; klll9++)

 ssll[sm00[klll9]][0]=rtrt3[lll1][klll9];

//_____________________________ for(lll2=0; lll2<K162; lll2++)

 for(lll2=0; lll2<K162; lll2++)

 {

 for(klll9=0; klll9< GRAN; klll9++)

 ssll[klll9][1]=ssll[klll9][0];

 for(klll9=0; klll9<9; klll9++)

 {

 smPR=sm00[1]+sm00[klll9];

 if(ssll[smPR][1]!=-1)

 {

 if(ssll[smPR][1]!=rtrt3[lll2][klll9]) goto nnhh2;

 }

 else

 ssll[smPR][1]=rtrt3[lll2][klll9];

 }

//_________________________________ for(lll3=0; lll3<K162; lll3++)

 for(lll3=0; lll3<K162; lll3++)

 {

strcpy(ccdd,"("); ltoa(mK162,strin,10); strcat(ccdd,strin); strcat(ccdd,") "); ltoa(lll1,strin,10); strcat(ccdd,strin); strcat(ccdd," ");

ltoa(lll2,strin,10); strcat(ccdd,strin); strcat(ccdd," "); ltoa(lll2,strin,10); strcat(ccdd,strin); strcat(ccdd," ");

22

 StatusBar1 -> SimpleText = ccdd;

 for(klll9=0; klll9< GRAN; klll9++) ssll[klll9][2]=ssll[klll9][1];

 for(klll9=0; klll9<9; klll9++)

 {

 smPR=sm00[2]+sm00[klll9];

 if(ssll[smPR][2]!=-1)

 {

 if(ssll[smPR][2]!=rtrt3[lll3][klll9]) goto nnhh3;

 }

 else

 ssll[smPR][2]=rtrt3[lll3][klll9];

 }

//_________________________________ for(lll4=0; lll4<K162; lll4++)

 for(lll4=0; lll4<K162; lll4++)

 {

 for(klll9=0; klll9< GRAN; klll9++) ssll[klll9][3]=ssll[klll9][2];

 for(klll9=0; klll9<9; klll9++)

 {

 smPR=sm00[3]+sm00[klll9];

 if(ssll[smPR][3]!=-1)

 {

 if(ssll[smPR][3]!=rtrt3[lll4][klll9]) goto nnhh4;

 }

 else

 ssll[smPR][3]=rtrt3[lll4][klll9];

 }

//_________________________________ for(lll5=0; lll5<K162; lll5++)

 for(lll5=0; lll5<K162; lll5++)

 {

 for(klll9=0; klll9< GRAN; klll9++) ssll[klll9][4]=ssll[klll9][3];

 for(klll9=0; klll9<9; klll9++)

 {

 smPR=sm00[4]+sm00[klll9];

 if(ssll[smPR][4]!=-1)

 {

 if(ssll[smPR][4]!=rtrt3[lll5][klll9]) goto nnhh5;

 }

 else

 ssll[smPR][4]=rtrt3[lll5][klll9];

 }

//_________________________________ for(lll6=0; lll6<K162; lll6++)

 for(lll6=0; lll6<K162; lll6++)

 {

 for(klll9=0; klll9< GRAN; klll9++) ssll[klll9][5]=ssll[klll9][4];

 for(klll9=0; klll9<9; klll9++)

 {

 smPR=sm00[5]+sm00[klll9];

 if(ssll[smPR][5]!=-1)

 {

 if(ssll[smPR][5]!=rtrt3[lll6][klll9]) goto nnhh6;

 }

 else

 ssll[smPR][5]=rtrt3[lll6][klll9];

 }

//_________________________________ for(lll7=0; lll7<K162; lll7++)

 for(lll7=0; lll7<K162; lll7++)

 {

 for(klll9=0; klll9< GRAN; klll9++) ssll[klll9][6]=ssll[klll9][5];

 for(klll9=0; klll9<9; klll9++)

 {

 smPR=sm00[6]+sm00[klll9];

 if(ssll[smPR][6]!=-1)

 {

 if(ssll[smPR][6]!=rtrt3[lll7][klll9]) goto nnhh7;

 }

 else

 ssll[smPR][6]=rtrt3[lll7][klll9];

 }

//_________________________________ for(lll8=0; lll8<K162; lll8++)

 for(lll8=0; lll8<K162; lll8++)

 {

 for(klll9=0; klll9< GRAN; klll9++) ssll[klll9][7]=ssll[klll9][6];

23

 for(klll9=0; klll9<9; klll9++)

 {

 smPR=sm00[7]+sm00[klll9];

 if(ssll[smPR][7]!=-1)

 {

 if(ssll[smPR][7]!=rtrt3[lll8][klll9]) goto nnhh8;

 }

 else

 ssll[smPR][7]=rtrt3[lll8][klll9];

 }

//_________________________________ for(lll9=0; lll9<K162; lll9++)

 for(lll9=0; lll9<K162; lll9++)

 {

 for(klll9=0; klll9< GRAN; klll9++) ssll[klll9][8]=ssll[klll9][7];

 for(klll9=0; klll9<9; klll9++)

 {

 smPR=sm00[8]+sm00[klll9];

 if(ssll[smPR][8]!=-1)

 {

 if(ssll[smPR][8]!=rtrt3[lll9][klll9]) goto nnhh9;

 }

 else

 ssll[smPR][8]=rtrt3[lll9][klll9];

 }

//_________________________________ VSTA

rrNADx[0]=(long)lll1/K117; rrNADx[1]=(long)lll2/K117; rrNADx[2]=(long)lll3/K117; rrNADx[3]=(long)lll4/K117;

rrNADx[4]=(long)lll5/K117; rrNADx[5]=(long)lll6/K117; rrNADx[6]=(long)lll7/K117; rrNADx[7]=(long)lll8/K117;

rrNADx[8]=(long)lll9/K117;

EstNet=0;

 for(lll=0; lll<K162; lll++)

 {

 if

 (

 (rrNADx[0]==rtrt3[lll][0])&& (rrNADx[1]==rtrt3[lll][1])&& (rrNADx[2]==rtrt3[lll][2])&& (rrNADx[3]==rtrt3[lll][3])&&

 (rrNADx[4]==rtrt3[lll][4])&& (rrNADx[5]==rtrt3[lll][5])&& (rrNADx[6]==rtrt3[lll][6])&& (rrNADx[7]==rtrt3[lll][7])&&

 (rrNADx[8]==rtrt3[lll][8])

)

 {

 NMtest=lll;

 VES[lll]=VES[lll]+1;

 EstNet=1;

 break;

 }

 }

if(!EstNet) { Application->MessageBox("Error !!!!!!!!!!!!!!!","Warning",MB_OK);

goto nnhh;

}

PrNprOb=0;

 for(lll=0; lll<K162; lll++)

 {

 if

 (

 (rrNADx[0]==rtrt3OB[lll][0])&& (rrNADx[1]==rtrt3OB[lll][1])&& (rrNADx[2]==rtrt3OB[lll][2])&& (rrNADx[3]==rtrt3OB[lll][3])&&

 (rrNADx[4]==rtrt3OB[lll][4])&& (rrNADx[5]==rtrt3OB[lll][5])&& (rrNADx[6]==rtrt3OB[lll][6])&& (rrNADx[7]==rtrt3OB[lll][7])&&

 (rrNADx[8]==rtrt3OB[lll][8])

)

 {

 if(lll/K117==ssll[SS0][8])

 {PrNprOb=1;

 }

 break;

 }

 }

if(!PrNprOb)

{Application->MessageBox("N0 R-1 !!!!!!!!!!!!!!!!!!!","Warning",MB_OK);

 goto nnhh;

}
//--------------------------- VSTA

24

nnhh9:
 }
//-------------------------------- for(lll9=0; lll9<K162; lll9++)
nnhh8:
 }
//-------------------------------- for(lll8=0; lll8<K162; lll8++)
nnhh7:

 }
//-------------------------------- for(lll7=0; lll7<K162; lll7++)
nnhh6:
 }
//-------------------------------- for(lll6=0; lll6<K162; lll6++)
nnhh5:
 }
//--------------------------- for(lll5=0; lll5<K162; lll5++)
nnhh4:
 }
//-------------------------- for(lll4=0; lll4<K162; lll4++)

nnhh3:
 }
//--------------------------- for(lll3=0; lll3<1V62; lll3++)
nnhh2:
 }
//-------------------------- for(lll2=0; lll2<K162; lll2++)
}
//-------------------------- for(lll1=0; lll1<K162; lll1++)
nnhh:

